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Nonequilibrium thermodynamics and Fisher information: Sound wave propagation in a dilute gas
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As recently shown, a constrained Fisher-information extremizing~CFIE! process is able to deal with both
equilibrium and nonequilibrium thermodynamic processes, thus being able to reproduce results deduced by a
recourse to Boltzmann’s transport equation~BTE!. Here, we discuss the propagation of sound waves in a dilute
gas and compare the ensuing CFIE solutions with those obtained by a recourse to Grad’s approach to the BTE.
The final molecular distribution function arrived at is the same following two alternative routes, either~i! the
BTE via the Grad approach or~ii ! the constrained Fisher treatment that doesnot require the use of the BTE.
The way the necessarya priori information is used in these two instances, is however, quite different.
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I. INTRODUCTION

Information theory, as developed by Jaynes@1#, maxi-
mizes Shannon’s information entropy@2# subject to con-
straints which constitute the ‘‘prior information.’’ This meth
odology yields an optimal distribution consistent with the
constraints, although the procedure does not always lea
an adequate distribution function@3#. This fact has encour
aged the formulation of alternative variational procedu
@3–5# that maintain Jaynes’ spirit but use, instead, the inf
mation measure of Fisher@6#. The Fisher statistics provide
an information measureI which, like that of Shannon’s, is a
functional of the distributionf.

It is becoming increasingly evident@3–5,7–24# that Fish-
er’s information measureI provides a new viewpoint within
the information theoretic approach to physics often refer
to as ‘‘the Wheeler program’’@25#. In Refs. @10,14,26# one
appreciates the fact that theI concept lays the foundations o
thermodynamicsin the usual equilibriumcase.Nonequilib-
rium thermodynamics is amenable to a similar treatm
@10,14,27#.

The main result of Ref.@27# is the establishing, viaI, of a
‘‘connection’’ between nonequilibrium thermodynamics a
a Schro¨dinger-like equation. It is thus seen that both therm
dynamics and quantum mechanics can be expressed
recourse to a formal Schro¨dinger wave equation~SWE!, out
of a common informational basis@14#. The physical meaning
of this Schro¨dinger wave equation is quite flexible. In th
Fisher instance, its ‘‘potential function’’U(x) originates in
prior data^Ak& t , to be chosen according to the applicati
under consideration@14,27#. The ^Ak& t are introduced into
the theory asempirical inputs@27#. Both nonequilibrium and
equilibrium thermodynamics can be obtained from this c
strained Fisher extremization process whose output i
Schrödinger-like wave equation. Equilibrium thermodynam
ics corresponds to the ground state~g.s.! solution, while non-
equilibrium thermodynamics corresponds to linear super
sitions of this g.s. with excited state solutions@27#. In the
present paper we shall study, within such a Fisher cont
1063-651X/2003/68~1!/016105~11!/$20.00 68 0161
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the propagation of sound waves in a monatomic gas.
main objective is to compare the ensuing solutions w
those obtained using Boltzmann’s transport equation.

It is worth mentioning here that some interesting boo
have recently discussed the connection between informa
theory, kinetic theory, and nonequilibrium thermodynami
which is the topic of our present initial endeavors, in whi
we explore links with Fisher~rather than with Shannon! in-
formation. We refer the interested reader to Refs.@28–30#.
Some older but quite valuable works are presented in R
@31–35#. These books, in addition, summarize the ma
scores of papers that, over time, laid the foundations for
built the connections with Shannon’s information.

The work is organized in the following way. In Sec. II, w
review the Fisher information approach to nonequilibriu
states via a Schro¨dinger wave equation@26,27#. For didactic
reasons, we will also discuss here the conventional Bo
mann treatment of the sound-propagation problem as a
of getting a proper perspective for our approach. This is d
in two steps:~i! in Sec. III, we deal with the Boltzmann
transport equation and its conservation theorems~see the Ap-
pendix!, from which we can construct the initial condition
for our specific problem and~ii ! we devote Sec. IV to a
spatial method of tackling the Boltzmann transport equat
via Gauss-Hermite polynomials by recourse to the Grad
proach@36#. The methodology of this section constitutes t
stepping stone towards the Fisher information treatment.
ter this Boltzmann detour, we review in Sec. V the conn
tion between excited eigensolutions to the Schro¨dinger wave
equation and nonequilibrium thermodynamic states@27#, and
later tackle sound propagation with this technique. Fina
some conclusions are drawn in Sec. VI.

II. DESCRIPTION OF NONEQUILIBRIUM STATES
VIA A SCHRÖ DINGER WAVE EQUATION

In this section, we review the formalism developed
Ref. @27#, regarding the connection between Fisher inform
tion and thermodynamics. The latter can be regarded, f
©2003 The American Physical Society05-1
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an axiomatic viewpoint, as a logical mathematical struct
whose axioms are empirical results@37#. This gives thermo-
dynamics a unique epistemological status among scien
theories. Of course, thermodynamics does not assume
underlying microscopic picture~it does not need it!.

Consider now a system that is specified by a set ofM
physical parametersQk measured at timet. We can write

Qk5^Ak& t with Ak5Ak~x! ~k51, . . . ,M ! ~1!

andQk measured at the timet. Note that the set ofQk values
is the prior knowledge which represents empirical inform
tion measured at fixed timet.

Let the pertinent probability distribution function~PDF!
to bep(xut), then by definition we have

^Ak& t5E dxAk~x!p~xut !, k51, . . . ,M . ~2!

These mean values play the role of thermodynamical v
ables, as explained in Ref.@27#. It was shown in Ref.@27#
that the relevant PDFp(xut) in this context extremizes th
so-called Fisher information measureI subject to~i! the prior
conditions~1! and, of course~ii ! the normalization condition

E dxp~xut !51. ~3!

In order to find this PDF, one has to solve a SWE@5,27,38#

2
1

2
c92

1

8 (
k51

M

lk~ t !Akc5
1

8
ac, ~4!

where the Lagrange multipliera/8 plays the role of an en
ergy eigenvalueEn and the sum of the (lkAk) is an effective
potential function

U5U~x,t !5
1

8 (
k51

M

lk~ t !Ak~x!, ~5!

where the Lagrange parameterslk are fixed by recourse to
the available prior information. The modulus squared of
solutionsc yields the PDF@5,27#

uc~x,t !u2 5 p~xut !. ~6!

It is important to note the following points.
~1! No specific potential has been assumed, as is ap

priate for thermodynamics. Also, we note thatU is a time-
dependent potential function and will allow for the descr
tion of nonequilibrium situations.

~2! The specificAk(x) to be used depend upon the natu
of the physical application at hand. This application could
of either a classical or a quantum nature.

~3! Equation ~4! represents a boundary value proble
generally with multiple solutions, in contrast with the uniq
solution one obtains when employing the Jaynes-Shan
entropy in place of Fisher’s measure@39#.
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~4! The solution leading to the lowestI value is the equi-
librium one@26#, while linear superpositions of excited solu
tions yield the nonequilibrium states@27#.

The connection between the Schro¨dinger wave equation
excited solutions and the nonequilibrium thermodynam
will be reviewed in Sec. V.

III. BOLTZMANN TRANSPORT EQUATION FOR SOUND
WAVES SPREADING IN A MONATOMIC GAS

The dynamical equation of motion for gases, i.e., t
Boltzmann transport equation~BTE!, is one of the most use
ful tools for dealing with nonequilibrium phenomena. Th
equation makes a clear separation between the effects o
irregular collisions and the effects of regular motion. Regu
motion is slowly varying, while collisions are rapid. Th
Boltzmann transport equation averages out the fast, irreg
collisions. Therefore, the scales of time and length of inter
in this equation are much larger than those for the collis
times and molecular sizes, respectively.

The Boltzmann transport equation for sound waves pro
gating in a monatomic gas takes the specific form@40,41#

F ]

]t
1v•

]

]r G f 5Dcf , ~7!

where f 5 f (r ,v,t) is the molecular distribution function
~MDF!, Dcf represents changes inf due to collision effects
~the explicit expression can be found in Ref.@40#!, and no
external forcesF are assumed to be operative.

In order to investigate nonequilibrium phenomena it
necessary to solve the Boltzmann transport equation w
given initial conditions so as to obtain the distribution fun
tion as a function of time. Some important properties of a
solution to the Boltzmann equation may be obtained from
fact that in any molecular collision there are dynamical qu
tities that are rigorously conserved. This gives rise to imp
tant conservation theorems~see the Appendix!. Let j(r ,v) be
any quantity associated with a molecule of velocityv located
at r . If, in any collisionv1 ,v2→v18 ,v28 taking place atr , we
have j11j25j181j28 , we call j a conserved quantity an
@41#

E d3vj~r ,v!@Dcf #50. ~8!

From Eq.~8! and an appropriate choice ofj ~see the Appen-
dix!, we get three independent conservation theorems
mass, momentum, and energy, respectively@41#. These con-
servation theorems will be needed below.

In this section, we are concerned with a particular a
proach to the Boltzmann equation, which was introduced
Ref. @36#. In this respect, it may be of utility to present fir
a brief recapitulation of the pertinent conservation theore
illustrated with reference to sound propagation.

A. The concept of local thermal equilibrium

We introduce now the concept of local thermal equili
rium @42#. This is a quite useful concept for a variety o
5-2
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purposes@40#. It is enough to mention here the description
radiative processes in stellar atmospheres@42#. Consider then
a gas ofN molecules of massm in a volumeV that, although
not in equilibrium, is not far from it. More specifically, an
invoking the idea of local thermal equilibrium~LTE!, we
assume that in the vicinity of any point in the gas, the m
lecular distribution function is locally the Maxwell
Boltzmann distributionf (0)(r ,v,t) and that~i! the densityr
5mn @with n(r ,t)5*d3v f (r ,v,t)], ~ii ! the temperatureT,
and ~iii ! the average~or bulk! velocity u[^v& vary only
slowly in both space and time. The effect of collisions is n
neglected in such an approach. On the contrary, it is rega
as very important, since one assumes that collisions qui
restore local equilibrium. However, the effect of collisions
here of a tacit character, not an explicit one~no appeal to
scattering cross sections is made!. In these conditions, the
idea of local thermal equilibrium entails setting

f ~r ,v,t !. f (0)~r ,v,t !, ~9!

f (0)~r ,v,t !5n~r ,t !~a/p!3/2exp~2a@v2u#2!,

a5~m/2!kT, with kB the Boltzmann constant.~10!

Within the LTE context, the BTE conservation theorem
now become equations restricting the behavior ofr ~or of
n), T, andu. Indeed, one easily ascertains@41# that the quan-
tity Pi j [r^@(v) i2(u) i #@(v) j2(u) j #&, i.e., the pressure ten
sor, becomes the hydrostatic pressureP5nkBT. Addition-
ally, we find that the conservation theorems take
following form @41#:

]r

]t
1“•~ru!50 ~continuity! ~11!

S ]

]t
1u•“ Du52

1

r
“P ~Euler! ~12!

S ]

]t
1u•“ DT52

1

cV
~“•u!T, ~13!

with cV the specific heat at constant volume (cV53/2).
These equations must be obeyed by the slow, smooth v
tion in space and time, which according to the LTE, t
quantitiesr, n(r ,t), T, andu undergo.

It is important, for the Fisher considerations to be und
taken below, to point out that Eqs.~11!–~13! can be also
derived from heuristic considerations of a more general ch
acter, without a recourse to the LTE@41#. Additionally, and
this is the central point that underlies our Fisher approa
they can be confirmed asexperimental resultsfrom the field
of hydrodynamics@41#. Indeed, Eqs.~11!–~13! are the hy-
drodynamic equations for the nonviscous flow of a fluid a
possess solutions describing flow patterns that persist in
nitely @41#. In the local thermal equilibrium framework, th
local Maxwell-Boltzmann distribution never decays to t
true ~global! Maxwell-Boltzmann distribution, which is in
rough agreement with experience.
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The quantity (]/]t1u•“)X is called the ‘‘material~or
convective! derivative of X’’ @41#. It is the time rate of
change ofX to an observer moving with the velocityu. This
observer is said to be moving along a streamline. One
portant consequence of the above equations~see the Appen-
dix! is thatdiluted monatomic gases undergo only adiaba
transformationswhen observed from a reference frame mo
ing along the streamline@41#. This entails that the equatio
of state reads

Pr25/35const~along a streamline!. ~14!

Summing up, the results recapitulated in this section p
vide important information that is, however, contemplated
a different way according to whether one is to treat t
sound-propagation problem following the prescriptions
~A! the Boltzmann transport equation~via the method of
moments technique@40,36,43#, see below! or ~B! a con-
strained Fisher extremizing process.

Accordingly, it is important to realize that everything w
learn from Eqs.~11!–~13!, together with Eq.~14!, is re-
garded by the two methodologies discussed in this pape
quitedifferentways, namely, either as in~A! Grad’s method,
where thef 0 form is introduced into the BTE conservatio
theorems, or~B! in the CFIE approach which deals wit
experimentalinformation pertaining to the field of hydrody
namics.

Obviously, the second approach, being an informat
theory technique, needs empirical informational input th
the Grad method can dispense with, replacing it by theo
ical considerations. The two different paths will be show
below to lead to the same molecular distribution, thou
One ends up entering information into each of the metho
equations~that are quite different indeed! using the same
mathematical input. The epistemological origin of this inp
let us insist on this point once again, is different in the tw
cases.

B. Propagation of sound in a dilute gas

Sound can be thought of as a perturbation of the med
that manifests itself via small departures, from their glob
equilibrium values, of various fields: those of~i! density
r(r ,t)5mn(r ,t), ~ii ! pressure P(r ,t), ~iii ! temperature
T(r ,t), and ~iv! fluid bulk velocity u(r ,t)
5@*d3vvf (r ,v,t)/n(r ,t)#. The corresponding global
equilibrium values are denoted byro5mN/V5mno , Po ,
To , and uo , respectively. In the present instance,uo50,
since the gas is globally at rest. Notice that the supersc
‘‘(0)’’ is used for the LTE. The subscript ‘‘o’’ indicates that
we deal with global-equilibrium quantities.

Sound propagation in a dilute gas entails planar motion
the medium along, say, thez direction, so thatu5uĕz . The
pertinent analysis starts by representing both the gas de
r and its pressureP in the form of sums of global-
equilibrium values plus perturbations that are produced
the sound wave, i.e.,

r[r (0)5ro~11s!; P[P(0)5Po~11P!. ~15!
5-3
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Due to the fact that the perturbation is small,r and P will
slightly differ from their respective~global! equilibrium val-
ues. Also, as the bulk velocitiesu are much smaller than th
sound velocityco , we have

s;P;
uuu
co

;m!1, ~16!

m being a small dimensionless parameter. In these co
tions, Eq.~14! entails

T5S r

ro
D 2/3

To . ~17!

Notice that quite an important amount of information is e
capsulated into this equation of state. On one hand,
equation arises from the conservation theorems. On the o
one, it can also be regarded as an experimental result per
ing to the study of nonviscous fluids@41#. This last point of
view will be invoked in our Fisher treatment below.

Writing now r as a function ofs @cf. Eq. ~15!#, explicit
introduction of the temperatureT, given by Eq.~17!, into the
conservation expressions~11!–~13! leads@in agreement with
Eq. ~15!# to a set of just two equations, namely,

s t1usz1~11s!uz50, ~18!

ut1uuz1co
2~11s!21/3sz50, ~19!

wheresz5]s/]z, s t5]s/]t ~similar notation foru deriva-
tives!, andco is given by

co5A5

3

kBTo

m
. ~20!

An appropriate treatment of the set of Eqs.~18! and ~19!
@41# allows one to obtain linear equations fors andu when
second-order quantities inm are neglected. With such a firs
order approximation~in m), a straightforward manipulation
of the above equations leads to the following results@41#.

~i! For thes field, we have

szz2
1

co
2
s tt50, ~21!

which is a wave equation describing a sound wave of am
tudeso with propagation velocityco ,

s5soexp@ i ~kz2wot !#, co5
wo

k
. ~22!

~ii ! For theu field one finds an equation of form~21! so
that, keeping in mind Eq.~16!, we can writeu5cos. In this
way, up to the first order inm we have

r5ro~11s!; u5cos; T5To~11 2
3 s!, ~23!

with s given by Eq.~22!.
01610
i-

-
is
er
in-

i-

We have thus obtained, on the basis of~i! the conservation
theorems within a LTE context, and~ii ! a first-order approxi-
mation inm, an explicit expression fors(z,t) and therefore
for

r~z,t !5ro@11s~z,t !#. ~24!

What is then the form of the corresponding molecular dis
bution function? It should be of the form

f ~z,v,t !5 f o~v !@11g~v !s~z,t !#, ~25!

with g(v) an appropriate function of the molecular velociti
v. To find it we need to solve the BTE. The path we sh
follow in order to answer the above question is the first s
nificant result of the present paper.

At this, stage it is important to note that if Eq.~22! for s
is inserted into the MDF~evaluated up to some appropria
perturbation order!, the resulting expression does notexplic-
itly include collision effects. In this effort we will be con
cerned with this type of MDF. A better approximation fors,
consistent with Eq.~23! but explicitly incorporating such ef-
fects, would be clearly desirable. Steps towards such a
are under consideration by the present authors and wil
published in the near future. We pass now to a methodol
for dealing with the transport equation.

C. The method of moments technique

In dealing with the Boltzmann transport equation one
ten faces great difficulties whose character is of both ma
ematical and physical natures. TheDcf contribution depends
on the effective cross section for molecular collision,s8. As
one often ignores the form ofs8, the problem of integrating
the Boltzmann transport equation becomes problematic
deed. In practice, one makes use of simplified models
which the molecular interaction can be represented by a
ficiently simple law that depends on the distance among
particles. A number of methods to tackle the ensuing, sim
fied Boltzmann problem have been developed over the ye
In this respect, an interesting approach to nonequilibri
thermodynamics via the Boltzmann transport equation
been developed by Grad@36# ~see also Refs.@40,43#!. Due to
the fact that the concomitant treatment allows one to visu
ize the connection between the Schro¨dinger wave equation’s
excited states and the Boltzmann transport equation’s s
tions, we will use below the Grad technique to find the d
tribution function for the sound-propagation problem.

IV. METHOD OF MOMENTS TECHNIQUE TO
NONEQUILIBRIUM THERMODYNAMICS

A. Brief review

Consider the nonequilibrium state of a gas after the timt
has elapsed, which is large compared to the time of ini
randomization~this time t is regarded asfixed! such that
conditions of local thermal equilibrium@42# prevail, a cir-
cumstance very common indeed@40,42#. Now, at each point
of the vessel containing the gas a state arises which is c
to the local equilibrium state. This is, of course, the loc
5-4
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thermal equilibrium scenario that allows us to use its ass
ated conservation laws. More specifically, we consider
sound-propagation stage described in Sec. III B@cf. Eq.
~15!#, and assume a globalf o , the Maxwell-Boltzmann law
on velocities, as envisioned there. This allows one to exp
the nonequilibrium distributionf as

f 5 f ~x,t !5 f 0~x!@11ef~x,t !#, ~26!

where e is small. Determining the functionf will be our
goal now. Following elementary ideas from the theory
vector spaces, the unknown functionf(x,t) may itself be
expanded in an appropriate basis. The~orthogonal! Hermite-
Gaussian polynomialsHi(x) that we will employ here usu
ally constitute quite a convenient basis in many instanc
especially in quantum mechanical calculations. Defin
ai(t) as the pertinent coefficients at the fixed timet, we have

f~x,t !5(
i

ai~ t !Hi~x!. ~27!

Expansion~27! was proposed by Grad in 1949, and it is we
known in the kinetic theory@36#. It is important to point out
that Hermite-Gaussian polynomials are orthogonal with
spect to a Gaussian kernel, i.e., theequilibrium distribution.
No other set of functions is orthogonal~and complete! with
respect to a Gaussian kernel function.

Now, because of orthogonality, the unknown coefficie
ai(t) relate linearly to appropriate~unknown! moments off
over velocity space (x space!, so that substituting the expan
sion for f into the transport equation and integrating over
velocities yields now a set of equations in the mome
~which are generally a function of the fixed time valuet).
These equations are solvable subject toknown initial condi-
tions, so that these moments now become known~including
any time dependence!. As a consequence, the coefficien
ai(t) of Eq. ~27! are also known, which givesf.

According to Refs.@40,36,43#, the solution of the above
system of equations would be equivalent to the exact s
tion of Boltzmann’s equation~if enougha priori information
were available!.

B. The treatment of sound propagation by the method
of moments

We tackle now our BTE treatment of sound propagati
We will do this using the Grad-MOM algorithm. Rememb
that, to such an end, we need the results obtained in Sec
We start by castingf 05) i

3f o,i and focus our attention on th
z component off, the direction of propagation. The Grad
method of moments~MOM! to find f @40,36,43# entails its
expansion in the manner

f ~z,v,t !5 f 0~v !F11e~z!(
i

W

ai~ t !Hi~Aav !G , ~28!

where f o is the Maxwell-Boltzmann law on velocities
01610
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III.

f o5noS a

p D 1/2

exp~2av2!; a5
m

2kBTo
; v5vz ,

~29!

with To the temperature of the medium,m the molecular
mass, andKB the Boltzmann constant. Here,no equals half
number of particles per unit of volume for the equilibriu
state. In principle,W is infinite and so is the number o
coefficientsai that needs to be determined. The Grad m
ment equations form an open hierarchy. Under suitable c
ditions, however, one can obtain reasonable results usin
finite W value, as in the case we will discuss below, in whi
a suitable closure is introduced.

Assuming that~i! f is not too different from the equilib-
rium value f o and ~ii ! the differencef 2 f o is produced by a
plane wave of long wavelength (k!1), we can write

f . f o@11boHo1b1H11b2H2#, ~30!

wherebj5bj (z,t)5e(z)aj (t)5meikzaj (t), m being a small
dimensionless parameter. Our goal here is that of determ
ing bo , b1, andb2. The first three Hermite polynomials are
respectively,

Ho51, H152Aav, H254av222,

and Eq.~30! then takes the form

f 5 f o@11bo12b1Aav12b2~2av221!#. ~31!

The coefficientsbj will be determined from appropriate
velocity-moment conditions, for which we choose

E
2`

`

f ~z,v,t !dv5n~z,t !,

E
2`

`

~mv ! f ~z,v,t !dv5mn~z,t !u~z,t !,

E
2`

` S 1

2
muv2uu2D f ~z,v,t !dv5

1

2
n~z,t !kBT~z,t !,

~32!

the magnitudesn(z,t), u(z,t), andT(z,t) conserving their
usual meaning, i.e., particle number per unit volume, b
velocity, and temperature, respectively. The above equat
are solvable subject to known initial conditions, for whic
we need to use the availablea priori information.

Since the perturbation is small, we can use the LTE c
servation theorems derived above for diluted monatom
gases in the preceding section. Thus, we assume tha
(z,t) dependence of the MDF is given by the conservat
theorems. Here, we are only concerned about the velo
dependence. Indeed, the whole purpose of the preceding
tion was to prepare the stage for the present MOM treatm

To the first order inm @see Eqs.~16! and ~23!#, we have
~with r5nm)

n5no~11s!u5cosT5To~11 2
3 s!. ~33!
5-5
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Thus, we have~to the same order of approximation!

nu.nocos; nT.noTo~11 5
3 s!. ~34!

Inserting Eqs.~33! and~34! into the velocity-moment condi
tions, Eq.~32!, we obtain

E
2`

`

f dv5no~11s!, ~35!

E
2`

`

v f dv5nocos, ~36!

E
2`

`

v2f dv5
no

2a S 11
5

3
s D , ~37!

with a given by Eq.~29!. Sincef is given by Eq.~31!, inte-
gration then yields an easily solvable linear set of equati
for our unknownsbo , b1, andb2:

no~11bo!5no~11s!, ~38!

no

1

Aa
b15nocos, ~39!

no

2a
~11bo14b2!5

no

2a S 11
5

3
s D . ~40!

By solving the above system, one finds

bo5s; b15~ 5
6 !1/2s; b25 1

6 s. ~41!

Finally, substituting Eqs.~41! into form ~31! for f, and
taking into account thata55/(6co

2) @see Eqs.~20! and~29!#,
leads one to the molecular distribution function

f ~z,v,t !5 f 0~v !F11s~z,t !S 2

3
1

5

3

v
co

1
5

9

v2

co
2D G . ~42!

The functiong(v) of Eq. ~25! has now been determined t
be

g~v !5S 2

3
1

5

3

v
co

1
5

9

v2

co
2D , ~43!

which was our goal here.
According to Refs.@40,36,43#, Eq. ~42! is the BTE solu-

tion for our sound-propagation problem within the strictur
posed by the order of approximation one is adopting he
We stress again the fact that the form ofs(z,t) in Eq. ~25! is
derived from the above discussed LTE conservation th
rems@cf. Eq. ~22!#:

s5soexp@ i ~kz2wot !#, co5
wo

k
, ~44!

a sound wave of amplitudeso that propagates with velocity
co .
01610
s

s
e.

o-

V. SCHRÖDINGER WAVE EQUATION APPROACH TO
NONEQUILIBRIUM THERMODYNAMICS

A. Connecting the Schrödinger wave equation’s excited
solutions to nonequilibrium thermodynamics: A brief review

The connection has been established in Ref.@27#. The
excited solutionscn(x,t) to the Fisher-based SWE, Eq.~4!,
can be written as a superposition of Hermite-Gaussian p
nomials of the form

cn~x,t !5f0~x!(
i

bni~ t !Hi~x!, n51,2, . . . , ~45!

where f0 is the g.s. of the harmonic oscillator. The tot
number of coefficientsbni(t) depends upon how far from
equilibrium we are. At equilibrium there is only one suc
coefficient. The coefficientsbni(t) are computed at the fixed
time t at which the experimental input data^Ak& t are col-
lected. While the ground state solution of the Schro¨dinger
wave equation gives the equilibrium states of thermodyna
ics @26#, its excited solutions give nonequilibrium states@27#.
In other words,cn(x,t) is connected, under certain cond
tions ~see below!, with the known solutions of the Boltz
mann transport equationf (x,t) by

f ~x,t !5n~ t !ucn~x,t !u2 ~46!

at a fixed time t, where n(t) is the density of particles
~whichever their velocity! at instantt.

The connection given by Eq.~46! was established in Ref
@27# via the Grad-MOMf (x,t) of Eq. ~27!. Due to the fact
that the square modulus of an expansion in Herm
Gaussian polynomials is likewise a superposition
Hermite-Gaussian polynomials, with real coefficientscin(t),

ucn~x,t !u25@fo~x!#2(
i

cin~ t !Hi~x!, n51,2, . . . ,

~47!

then, for fixedn, the MOM coefficientsai(t) andcin(t) are
connected. Indeed, both are certainly computed at afixed
time t. That is, the MOM momenta are evaluated at that tim
Likewise, ^Ak& of Eq. ~2! can be regarded as velocity mo
menta at that time as well.

Although both the Grad-MOM and the Schro¨dinger wave
equation coefficients are interconnected, an intrinsic diff
ence exists between them, which is of a physical origin. T
MOM moments at the timet are physically correct by con
struction, since one actuallysolves them using the Boltz-
mann transport equation. On the other hand, the premis
the constrained Fisher information approach is that its in
constraints~here the velocity momentŝAk& t) are correct,
since they are obtained from experiment. Here, we are
suming error-free values~the introduction of error bars will
not be discussed here. We will deal with them in a futu
paper!.

Summing up, the approach given in Ref.@27# gives solu-
tions at the fixed~but arbitrary! time t which agree@via Eq.
~46!# with those obtained using the MOM approach. Th
holds, for fixedn, at each timet @cf. Eq. ~2!#. The Schro¨-
5-6
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dinger wave equation approach yields solutions valid at
crete time pointst. In other words, for any other time valu
t* we need to input neŵAk& values, appropriate forthis
time. The MOM, instead, obtains coefficientsai(t) valid for
continuous timet, since they are using the Boltzmann tran
port equation, which is a continuous one. This distinctio
‘‘discrete versus continuous,’’ does not compromise the
lidity of the Fisher-Schro¨dinger ⇔ nonequilibrium thermo-
dynamics bridge.

B. The Schrödinger wave equation treatment

In this section, we will analyze the propagation of sou
waves in a dilute gas using the Fisher information techniq
The solution so obtained will be compared with that of t
Boltzmann transport equation.

In order to find the PDF one has to solve the Schro¨dinger
wave equation corresponding to our available prior inform
tion. Due to the fact that the sound wave is traveling alo
the z direction, we choose thex coordinates so that Eq.~4!
becomespz5rov (v denotingvz) and write the Schro¨dinger
wave equation in the velocity space as

2
1

2ro

]2c

]v2
1 (

k51

M

lk8~ t !Ak~v !c5
a

8
c, ~48!

where lk8(t)Ak(v)52(1/8)lk(t)Ak(pz). The procedure to
be followed involves the following two stages.

~1! We determine first the global-equilibrium state that
to be later perturbed by the sound wave. Our input empir
information at this stage is that ofno , To , andro . Via the
equipartition theorem this is tantamount to knowing^v2&,
the one and only expectation value that enters here Eq.~48!.

~2! In the second stage, we use experimental facts reg
ing sound propagation in a fluid@empirical hydrodynamic
equations~11!–~13!#. This tells us that the (z,t) dependence
of the density perturbation produced by the sound wave i
the form prescribed in Eqs.~15! and ~22!. Additionally, we
assume knowledge of the empirical velocity of sound in
medium. As discussed below, this entails knowledge of^v&.

1. Ground state

At first stage, we deal with a monatomic gas that it
globally at rest. We know the gas densityro , its temperature
To , and the number of molecules per unit volumeno . Using
the equipartition theorem, we can write

^ 1
2 rov2&o5 1

2 nokBTo , ~49!

where the notation̂ &o is utilized to indicate that the averag
value is calculated in the equilibrium state. Equation~49!
constitutes the prior knowledge. Therefore, choosingA1(v)
5v2 and writing l18(t)5ro /(2vo

2),a/85E/vo
2 , the time-

independent Schro¨dinger wave equation is given by

F2
1

2ro

]2

]v2
1

ro

2vo
2 v2Gc5

E

vo
2
c ~50!
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which can be recast as

vo

2 F2
1

a

]2

]v2
1av2Gc5Ec, ~51!

wherea5ro /vo . Equation~51! is the well-known Schro¨-
dinger equation for the harmonic oscillator, for which th
ground state solution is given by

fo5S a

p D 1/4

expS 2
a

2
v2D . ~52!

The prior knowledge, Eq.~49!, then leads to

a5
ro

vo
5

m

2kBTo
. ~53!

Obviously, the ground state solution of the Schro¨dinger
wave equation is connected with the thermal equilibriu
state

nofo
25 f 0 , ~54!

where f o is the first term of the MOM expansion, i.e., th
Maxwell Boltzmann law.

2. Superposition of ground plus excited states

(a) Setting up the appropriate SWE problem.One is con-
cerned here with a sound wave of long wavelength (k!1)
that traverses a monatomic gas. According to our scena
we are in possession of two important pieces of informati
namely, that the sound velocityco is independent of the fre
quency @41# and that the accompanying internal proces
are adiabatic@41#, i.e.,

co
25g

kBTo

m
, g55/3. ~55!

We now assume that a further additional piece of knowled
is that of the actual~experimental! value for the gas sound
velocity co . As we have seen in Sec. III A thatu}co , this
entails knowing the mean value ofv. According to our CFIE
point of view, we should now introduce a linear term inv
within the ‘‘information’’ potential entering the Fisher SWE
accompanied by an appropriate Lagrange multiplierx which,
for the sake of convenience, is given the formx5Aaq. We
then need to determineq.

Our Fisher-Schro¨dinger wave equation now becomes

vo

2 F2
1

a

]2

]v2
1av21qAavGc5Ec ~56!

that can be treated perturbatively in view of our knowled
of the problem.

It is well known that if one perturbs the ground state
the harmonic oscillator with a linear term, only the first e
cited state enters the perturbative series because of the p
nent selection rules@45#, i.e.,
5-7
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^c0Hn~z!uzuc0Hm~z!&5c1d~n,m11!1c2d~n,m21!,
~57!

wherec1 andc2 are appropriate constants, which entails th
for m50 ~ground state!, only n51 ~first excited state! con-
tributes.

We can thus write Eq.~45! in the manner

c.f0@doHo1d1H1#, ~58!

where we writedj5dj (z,t)5meikzbj (t) (m!1). The first
two Hermite polynomials are

H051, H152Aav.

We can thus cast Eq.~58! in the form

c5f0@do12d1Aav !]. ~59!

Thus we have

ucu25fo
2@ao1a12Aav1a24av2#, ~60!

where the real coefficientsa i are related to thedi by the
following expressions:

ao5udou2; a152~do* d11dod1* !; a25ud1u2. ~61!

The coefficientsa j will be determined from the appropriat
velocity-momenta conditions. We start by calculating

^vn&5E
2`

`

vnucu2dv, n50,1,2 ~62!

using Eq.~60!. We obtain

^1&5ao12a2 ,

^v&5
1

Aa
a1 ,

^v2&5
1

2a
~ao16a2!. ~63!

On the other hand, we can use thea priori information for
evaluating the above mean values.

(b) Remarks on the treatment of information in the t
different approaches.At this stage, it is important to poin
out that we are looking at things in a way that is quite d
ferent from that of Sec. III. Here, the system of equatio
formed by~i! the continuity equation, Eq.~11!, ~ii ! the Eul-
er’s equation~12!, and~iii ! the experimental gas state equ
tion P5P(r) @cf. Eqs.~17! or ~14!# are regarded as empir
cal hydrodynamic equations that describe the propagatio
sound in a nonviscous gas@44#. This notion was already
advanced in the paragraph following Eq.~12!. Notice that
our Fisher treatment is a proper thermodynamic one@26,27#
and as such does not require any input information t
would assume underlying microscopic structures. This wo
indeed have been the case if we tried to include any in
mation from microscopic models such as the LTE or even
01610
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BTE for colliding atoms. However, as the input experimen
information indicates that we are in the presence of an a
batic process@and thus the equation of state~17! applies#,
our LTE conservation theorems and the empirical hydro
namic equations necessarily do agree.

The MOM approach uses the arguments and derivati
of Sec. III A so as to obtain the velocity moments. There
LTE conservation theorems constituted the source fr
which the relevant information derived. In the Fisher i
stance, the same information is used once again, but wi
twist: it is regarded as derived from experiment, not fro
conservation theorems. In both instances we obtain, as a
sult of judiciously employing thea priori information, the
(z,t) dependence of the density perturbations in r5ro(1
1s) @cf. Eq. ~15!#. What we need to determine is the velo
ity dependence of the distribution function.

(c) Solving the Fisher-SWE problem.Now, up to the first
order in m, we have @see Eqs.~16! and ~23!#, using r
5nm,

n5no~11s!; u5cos; T5To~11 2
3 s!. ~64!

Moreover, at the same order of approximation inm, we get

^v2&5
kBT

m
;

1

2a S 11
2

3
s D , ~65!

where we have invoked both the equipartition theorem a
the knowledge that the process is adiabatic.

Now taking into account, with reference to Eqs.~63!, both
the normalization condition and Eqs.~64! and ~65!, we get

15ao12a2 ,

cos5
1

Aa
a1 ,

11
2

3
s5ao16a2 . ~66!

The above equations’ system leads to

ao512 1
3 s, a15coAas, a25 1

6 s. ~67!

Substituting then Eq.~67! into Eq. ~60!, we find

ucu25fo
2F11sS 2

1

3
1

5

3

v
co

1
5

9

v2

co
2D G . ~68!

Inserting now Eq.~67! into Eq. ~61! leads to

do5~12 1
6 s!eiao, d15A 1

6 seia1,

cos~ao2a1!5 1
2 A5s, ~69!

so that, substituting the above expression into Eq.~59!, we
obtain
5-8
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c5foF12
s

6 S 125
v
co

D2 i
1

3
A5s

v
co

G , ~70!

where quantities smaller than those of the first order inm
have been neglected. Finally, we obtain the valueq
52(2/3)A6/5 for the Lagrange multiplier associated to o
knowing the actual value of the sound’s velocity@cf. Eq.
~56!#.

At this stage, the reader may well question the interes
the wave function~70!, insofar as there seems to be nothi
relevant inc that is not already contained in the probabili
distribution functionf . Three points are worth emphasizin
in this respect, given as follows.

~1! Wooters has shown@46# that thedistinguishabilitybe-
tween two probability distributionsf 1 and f 2 is measured by
the angle in the Hilbert space between the correspond
amplitudes~square roots! c1 and c2. More specifically, let
us defineV as the appropriate space of probability distrib
tions we are dealing with. Then, forf 1 , f 2PV we define the
Wootters distance as

DW~ f 1 , f 2!5 lim
n→`

1

An
Yn , ~71!

whereYn is the maximum number of intermediate vectorf
mutually distinguishable inn trials @46#. From our informa-
tional viewpoint, we are always going to infer PDF’s out
input data that will be contaminated by error. Physical d
tinguishability of PDF’s then constitutes an important issu

~2! No equation has received more attention with a vi
to approximations and numerical techniques than the SW
Thus, if faced with a given equation, it is always worthwh
to transform it, if at all possible, into a SWE. As an examp
see the treatment by Prigogine of the Liouville equation
Ref. @47#.

~3! In addition to these two purely practical points, the
is the important theoretical result described in the Introd
tion that both thermodynamics and quantum mechanics
be expressed by a recourse to a formal SWE, out of a c
mon informational basis@14#.

C. The connection

We are now in a position to appreciate just how the
cited states’ solution to the Schro¨dinger wave equation is
connected with our thermal off-equilibrium, soun
propagation state. The link reads, settingf (x,t)
5n(x,t)ucu2,

f 5no~11s!fo
2F11sS 2

1

3
1

5

3

v
co

1
5

9

v2

co
2D G , ~72!

that is,

f ~x,t !5nofo
2F11sS 2

3
1

5

3

v
co

1
5

9

v2

co
2D G . ~73!

Due to the fact thatnofo
25 f 0 @see Eq.~54!#, it is clear that
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nucu25 f , ~74!

where f is the molecular distribution function obtained v
the MOM technique@see Eq.~42!#. This is an elegant and
illuminating relationship~a kind of Rosetta stone! connecting
the off-equilibrium sound-propagation state with a super
sition of ground plus excited states of a Schro¨dinger wave
equation. The molecular distribution for the off-equilibriu
sound-propagation state is proportional to the square mo
lus of a Hilbert space wave function. Of course, after mak
this connection we are now able to speak of a microsco
substructure also within the Fisher context.

VI. CONCLUSIONS

We have revisited in this work the Fisher-SWE techniq
developed in Ref.@27#. We state now our main conclusion
below.

~1! As a rather interesting result, we have here illustrat
with reference to the sound wave propagation process in
lute gases and its treatment via the BTE, the equivale
between Grad’s method@36,40,43# for the BTE and the
Fisher SWE approach@27# that does not use~at all! the BTE.

~2! Additionally, we show how to derive, using these tw
methods, the (z,v,t) dependence of the perturbation to th
fluid density originated by a sound wave propagating alo
the z axis. Thus, starting with appropriate information, tw
different methods are given in order to obtain the pertin
MDF that represents the sound-propagation state of the
lute gas. These are given below.

~A! The Boltzmann method: The LTE conceptual info
mation and BTE conservation theorems constitute the G
BTE approach, which leads to the MDF.

~B! The Fisher method: The hydrodynamic experimen
information ~in two stages! constitutes the Fisher
Schrödinger wave equation, which again leads to the MD
Note that this method is independent of the Grad method

It is important to reiterate that thesourceof prior infor-
mation differs for the two approaches. In method~A! we
have included, as an essential form of prior information,
LTE conservation theorems. In method~B! instead, we had
to do with hydrodynamic experimental information, in tw
stages. In the first stage, we assume experimental knowle
of density, temperature, and molecular weight that enab
one to use the equipartition theorem. In the second stage
assume having measured the actual velocity of sound.

~3! Remember that thermodynamics can be regard
from an axiomatic viewpoint, as a logical mathematic
structure whose axioms are empirical results@37#. Thus, ther-
modynamics does not, indeed cannot, assume any under
microscopic picture. Since our Fisher treatment is a pro
thermodynamic one@26,27#, it does not require any inpu
information that would assume underlying microscop
structures, which would indeed have been the case if we t
to include any information from microscopic models such
the LTE. However, as the input experimental informati
indicates that we are in the presence of an adiabatic pro
@and thus the equation of state~17! applies#, the LTE conser-
vation theorems and the empirical hydrodynamic equati
5-9
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necessarily do agree, and, although the origin of the in
information is different in method~A! and ~B!, the output
informational content turns out to be equivalent in both a
proaches.

The a priori information in both approaches~A! and ~B!
determines the (z,t) dependence of the molecular distrib
tion function. The velocity dependenceg(v) is obtained in
quite disparate ways in methods~A! and ~B!. They do coin-
cide in the final result, though. As far as new physics
concerned, this fact constitutes the main contribution of
present paper.

~4! From an epistemological point of view, one shou
contrast the transparency and the immediacy of the Fis
approach with the convoluted and arduous path one m
traverse in the BTE case, as the Appendix dramatically
unequivocally illustrates.

~5! After connecting the MOM with the Fisher results w
are entitled to discuss the underlying substructures within
latter approach. Even though, according to the constra
Fisher tenets, we expected that the MDF would be given
the square modulus of some SWE wave function~WF!, what
we actually found is that this WF, for sound propagation in
dilute gas, is identical to that of a harmonic oscillator p
turbed by a linear term, a rather surprising result, since
oneexcited state enters the concomitant linear superposit
Situations that require higher-order perturbative treatme
are currently under investigation and are planned to be p
lished elsewhere.

APPENDIX: CONSERVATION THEOREMS
FOR THE BOLTZMANN EQUATION

We remind the reader in this appendix of the main fact
entering the discussion of the conservation laws involved
a discussion of~exclusively! the Boltzmann transport equa
tion @41#. None of the following considerations apply to th
Fisher treatment. The BTE~without external forces! reads

F ]

]t
1v•

]

]r G f 5Dcf , ~A1!

wheref 5 f (r ,v,t) is the MDF andDcf represents changes i
f due to collision effects, whose explicit expression can
found in Ref.@40#!. As we saw in Sec. III, in any molecula
collision there are dynamical quantities that are rigorou
conserved, which gives rise to important conservation th
rems.

If ~i! j(r ,v) is any quantity associated with a molecule
velocity v located atr , and, additionally~ii ! in any collision
v1 ,v2→v18 ,v28 , taking place atr , we havej11j25j181j28 ,
then ~iii ! j is a conserved quantity and@41#

E d3vj~r ,v!@Dcf #50. ~A2!

From Eq.~A2! and an appropriate choice ofj, we get three
independent conservation theorems for mass, momen
and energy, respectively,@41#.
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1. The relevant quantities

If we know the BTE solutionf 5 f (r ,v,t), we can imme-
diately evaluate the following quantities:

r~r ,t !5mE d3v f ~r ,v,t ! ~mass density!, ~A3!

u~r ,t !5E d3v f ~r ,v,t !v ~bulk velocity!, ~A4!

Q~r ,t !5
m

3
^uv2uu2& ~kB times temperature!, ~A5!

q~r ,t !5
m

3
r^uv2uu2~v2u!& ~heat flux vector!,

~A6!

Pi j 5r^@~v i2ui !~v j2uj !#& ~pressure tensor!, ~A7!

n~r ,t !5E d3v f ~r ,v,t ! ~particle density!. ~A8!

2. Conservation theorem

The BTE implies@41#

]

]t
^nj&1

]

]xi
^nv ij&2nK v i

]j

]xi
L 50, ~A9!

where Einstein’s subindex convention is employed. Let
now choosej to bej5m ~mass!, j5mv i ~momentum!, and
j5(m/2)^uv2uu2& ~thermal energy!. Using Eq.~A9! one im-
mediately obtains three conservation laws, namely, thos
~i! mass,~ii ! momentum, and~iii ! energy@41#.

Of course, as remarked by Huang@41#, in the classical
treatment~not in the Fisher one! one needs first to solve th
BTE and find then the pertinent MDF to be in a position
verifying that the above conservation laws are indeed
filled. This does not seem to be of much help. In text,
have used the local thermal equilibrium framework to co
struct f (0). Inserting it into Eq.~A9!, the above conservation
laws yield now three conditions thatu, r, andT must verify,
namely, Eqs.~11!–~13!. They are assumed in the classic
textbook treatment@41# to vary in a slow, smooth manne
according to the LTE. We learn now that this variation mu
respect these conservation equations. Moreover, our t
guiding Eqs. ~11!–~13! turn out to be the hydrodynami
equations for the nonviscous flow of a gas@41#. Two addi-
tional results are derived from these considerations@41#: ~i!
q(r ,t) vanishes identically, so that all our local processes
adiabatic, and~ii ! P5nkBT.

All the material is this appendix pertains exclusively
the Boltzmann treatment, and none of it whatsoever
needed in the Fisher treatment.
5-10
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