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Nonequilibrium thermodynamics and Fisher information: Sound wave propagation in a dilute gas
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As recently shown, a constrained Fisher-information extremiz@gIE) process is able to deal with both
equilibrium and nonequilibrium thermodynamic processes, thus being able to reproduce results deduced by a
recourse to Boltzmann's transport equati&TE). Here, we discuss the propagation of sound waves in a dilute
gas and compare the ensuing CFIE solutions with those obtained by a recourse to Grad’s approach to the BTE.
The final molecular distribution function arrived at is the same following two alternative routes, @jthie
BTE via the Grad approach ¢ii) the constrained Fisher treatment that doesrequire the use of the BTE.

The way the necessagypriori information is used in these two instances, is however, quite different.
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[. INTRODUCTION the propagation of sound waves in a monatomic gas. Our
main objective is to compare the ensuing solutions with

Information theory, as developed by Jayrd3, maxi- those obtained using Boltzmann’s transport equation.
mizes Shannon’s information entrog] subject to con- It is worth mentioning here that some interesting books
straints which constitute the “prior information.” This meth- have recently discussed the connection between information
odology yields an optimal distribution consistent with thesetheory, kinetic theory, and nonequilibrium thermodynamics,
constraints, although the procedure does not always lead ghich is the topic of our present initial endeavors, in which
an adequate distribution functid8]. This fact has encour- We explore links with Fishe(rather than with Shanngrin-
aged the formulation of alternative variational proceduredormation. We refer the interested reader to RE28-30.
[3-5] that maintain Jaynes’ spirit but use, instead, the infor-Some older but quite valuable works are presented in Refs.
mation measure of Fish¢6]. The Fisher statistics provides [31-33. These books, in addition, summarize the many
an information measurewhich, like that of Shannon’s, is a Scores of papers that, over time, laid the foundations for and
functional of the distributiof. built the connections with Shannon’s information.

It is becoming increasingly evidef8—5,7—24 that Fish- The work is organized in the following way. In Sec. I, we
er's information measurk provides a new viewpoint within review the Fisher information approach to nonequilibrium
the information theoretic approach to physics often referre@tates via a Schdinger wave equatiof26,27). For didactic
to as “the Wheeler program[25]. In Refs.[10,14,2§ one  reasons, we will also discuss here the conventional Boltz-
appreciates the fact that theoncept lays the foundations of mann treatment of the sound-propagation problem as a way
thermodynamicsn the usual equilibriumcase.Nonequilib- ~ of getting a proper perspective for our approach. This is done
rium thermodynamics is amenable to a similar treatmenin two steps:(i) in Sec. Ill, we deal with the Boltzmann
[10,14,27. transport equation and its conservation theorésas the Ap-

The main result of Ref.27] is the establishing, vig of a  pendix, from which we can construct the initial conditions
“connection” between nonequilibrium thermodynamics andfor our specific problem andii) we devote Sec. IV to a
a Schralinger-like equation. It is thus seen that both thermo-spatial method of tackling the Boltzmann transport equation
dynamics and quantum mechanics can be expressed byVvia Gauss-Hermite polynomials by recourse to the Grad ap-
recourse to a formal Schiinger wave equatiofSWE), out ~ Proach[36]. The methodology of this section constitutes the
of a common informational basj&4]. The physical meaning Stepping stone towards the Fisher information treatment. Af-
of this Schralinger wave equation is quite flexible. In the ter this Boltzmann detour, we review in Sec. V the connec-
Fisher instance, its “potential functiont)(x) originates in  tion between excited eigensolutions to the Sdimger wave
prior data(A);, to be chosen according to the application €quation and nonequilibrium thermodynamic st42#, and
under consideratiofil4,27. The (A,), are introduced into later tackle sound propagation with this technique. Finally,
the theory agmpiricalinputs[27]. Both nonequilibrium and Some conclusions are drawn in Sec. VI.
equilibrium thermodynamics can be obtained from this con-
strained Fisher extremization process whose output iS @  KESCRIPTION OF NONEQUILIBRIUM STATES
Schrcdmger—hke wave equation. Eqwhbnum thermodynam- VIA A SCHRO DINGER WAVE EQUATION
ics corresponds to the ground stéges) solution, while non-
equilibrium thermodynamics corresponds to linear superpo- In this section, we review the formalism developed in
sitions of this g.s. with excited state solutiof®7]. In the  Ref.[27], regarding the connection between Fisher informa-
present paper we shall study, within such a Fisher contextjon and thermodynamics. The latter can be regarded, from
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an axiomatic viewpoint, as a logical mathematical structure (4) The solution leading to the lowektvalue is the equi-

whose axioms are empirical resul&7]. This gives thermo- librium one[26], while linear superpositions of excited solu-

dynamics a unique epistemological status among scientifiions yield the nonequilibrium stat¢g7].

theories. Of course, thermodynamics does not assume any The connection between the Sctiilmger wave equation

underlying microscopic picturét does not need )it excited solutions and the nonequilibrium thermodynamics
Consider now a system that is specified by a seMof will be reviewed in Sec. V.

physical parameter®, measured at timé We can write

IIl. BOLTZMANN TRANSPORT EQUATION FOR SOUND

Ok=(Ar with A=A(x) (k=1,...M) (1) WAVES SPREADING IN A MONATOMIC GAS
and®, measured at the tinte Note that the set o, values The dynamical equation of motion for gases, i.e., the
is the prior knowledge which represents empirical informa-Boltzmann transport equatidBTE), is one of the most use-
tion measured at fixed time ful tools for dealing with nonequilibrium phenomena. This
Let the pertinent probability distribution functioPDP) ~ €quation makes a clear separation between the effects of the
to bep(x|t), then by definition we have irregular collisions and the effects of regular motion. Regular

motion is slowly varying, while collisions are rapid. The
Boltzmann transport equation averages out the fast, irregular
<Ak>t:f dxA()p(x|t), k=1,... M. (2)  collisions. Therefore, the scales of time and length of interest
in this equation are much larger than those for the collision
These mean values play the role of thermodynamical variimes and molecular sizes, respectively.
ables, as explained in ReR7). It was shown in Ref[27] The_BoItzmann transport equation for so_u_nd waves propa-
that the relevant PDPB(x|t) in this context extremizes the 9ating in a monatomic gas takes the specific f¢4,41
so-called Fisher information measursubject to(i) the prior

conditions(1) and, of coursdii) the normalization condition EJrv'ai f=D.f, 7)
r
f dxp(x|t)=1. (3)  where f=1(r,v,t) is the molecular distribution function

(MDF), D.f represents changes frdue to collision effects
(the explicit expression can be found in Rp40]), and no
external forced= are assumed to be operative.
M In order to investigate nonequilibrium phenomena it is
1 1 1 ; ;
Y 2 MDA == ai, (4) necessary to sol_v_e the Boltzmann Ttransport equation with
2 8 k=1 8 given initial conditions so as to obtain the distribution func-
tion as a function of time. Some important properties of any
where the Lagrange multiplie®/8 plays the role of an en- solution to the Boltzmann equation may be obtained from the
ergy eigenvalu&,, and the sum of theN(A,) is an effective  fact that in any molecular collision there are dynamical quan-
potential function tities that are rigorously conserved. This gives rise to impor-
tant conservation theorenisee the Appendjx Let &(r,v) be
1 M any quantity associated with a molecule of velositypcated
U=Ux)=g kzl Me(DAK(X), () atr. If, in any collisionv,,v,—V} v} taking place at, we
have &, +&,=¢1+&,, we call ¢ a conserved quantity and
where the Lagrange parametevg are fixed by recourse to [41]
the available prior information. The modulus squared of the
solutionsy yields the PDH5,27] f d3vé&(r,v)[D.f]=0. (8

In order to find this PDF, one has to solve a S\\&27,39

2 _
[P D% = p(x|t). ©) From Eq.(8) and an appropriate choice éf(see the Appen-
dix), we get three independent conservation theorems for

It is important to note the following points. _ mass, momentum, and energy, respectiyélij. These con-
(1) No specific potential has been assumed, as is apP'ervation theorems will be needed below.

priate for thermodynamics. Also, we note thatis a time- In this section, we are concerned with a particular ap-

dependent potential function and will allow for the descrip-5rq4ch to the Boltzmann equation, which was introduced in
tion of nonequilibrium situations. Ref.[36]. In this respect, it may be of utility to present first

(2) The specificA(x) to be used depend upon the nature pief recapitulation of the pertinent conservation theorems,
of the physical application at hand. This application could be strated with reference to sound propagation.
of either a classical or a quantum nature.

(3) Equation (4) represents a boundary value problem,
generally with multiple solutions, in contrast with the unique
solution one obtains when employing the Jaynes-Shannon We introduce now the concept of local thermal equilib-
entropy in place of Fisher’'s measuUi&9. rium [42]. This is a quite useful concept for a variety of

A. The concept of local thermal equilibrium
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purpose$40]. It is enough to mention here the description of The quantity ¢/dt+u-V)X is called the “material(or
radiative processes in stellar atmosphéd@3. Consider then convective derivative of X" [41]. It is the time rate of

a gas ofN molecules of masmin a volumeV that, although change ofX to an observer moving with the velocity This

not in equilibrium, is not far from it. More specifically, and observer is said to be moving along a streamline. One im-
invoking the idea of local thermal equilibriufLTE), we  portant consequence of the above equatises the Appen-
assume that in the vicinity of any point in the gas, the mo-dix) is thatdiluted monatomic gases undergo only adiabatic
lecular distribution function is locally the Maxwell- transformationsvhen observed from a reference frame mov-
Boltzmann distributiorf(°)(r,v,t) and that(i) the densityp  ing along the streamling41]. This entails that the equation
=mn [with n(r,t)=fd3vf(r,v,t)], (i) the temperaturd, of state reads

and (i) the average(or bulk) velocity u=(v) vary only

slowly in both space and time. The effect of collisions is not Pp %= const(along a streamline (14)
neglected in such an approach. On the contrary, it is regarded
as very important, since one assumes that collisions quickly
restore local equilibrium. However, the effect of collisions is
here of a tacit character, not an explicit ofr@ appeal to
scattering cross sections is madi these conditions, the
idea of local thermal equilibrium entails setting

Summing up, the results recapitulated in this section pro-
vide important information that is, however, contemplated in
a different way according to whether one is to treat the
sound-propagation problem following the prescriptions of
(A) the Boltzmann transport equatignia the method of
f(r,v,t)=FO(r,v,t), (9) moments .techniqué4oz3_6,43, see below or (B) a con-
strained Fisher extremizing process.

Accordingly, it is important to realize that everything we
learn from Eqgs.(11)—(13), together with Eq.(14), is re-
garded by the two methodologies discussed in this paper in
quite differentways, namely, either as i) Grad’s method,
where thef, form is introduced into the BTE conservation
theorems, or(B) in the CFIE approach which deals with
experimentainformation pertaining to the field of hydrody-
namics.

fO(r,v,t)=n(r,t)(a/ m)¥%xp —a[v—u]?),
a=(m/2)kT, with kg the Boltzmann constant(10)

Within the LTE context, the BTE conservation theorems
now become equations restricting the behaviopaofor of
n), T, andu. Indeed, one easily ascertajd] that the quan-

tity Pij=p([(v)i = (u)i][(v);— (u);]), i.e., the pressure ten-  qpyinusly, the second approach, being an information
sor, becomes the hydrostatic pressirenkgT. Addition-  heory technique, needs empirical informational input that
ally, we find that the conservation theorems take thepe Grad method can dispense with, replacing it by theoret-
following form [41]: ical considerations. The two different paths will be shown
P below to lead to the same molecular distribution, though.
op ) _ g One ends up entering information into each of the methods’

at TV-(pw)=0 (continuity ) equations(that are quite different indegdising the same
mathematical input. The epistemological origin of this input,

J 1 let us insist on this point once again, is different in the two
—+u-Vju=—-—-VP (Euler) (12) cases.
ot p
( J 1 B. Propagation of sound in a dilute gas
—4u- =— — . 13 . .
at u-vIT cV(V wr, (13 Sound can be thought of as a perturbation of the medium

that manifests itself via small departures, from their global-
with ¢y the specific heat at constant volume,E3/2).  equilibrium values, of various fields: those Gf density
These equations must be obeyed by the slow, smooth varig{r,t)=mn(r,t), (i) pressureP(r,t), (iii) temperature
tion in space and time, which according to the LTE, theT(r,t), and (iv) fluid bulk velocity u(r,t)
quantitiesp, n(r,t), T, andu undergo. =[fd3vi(r,v,t)/n(r,t)]. The corresponding global-

It is important, for the Fisher considerations to be under-equilibrium values are denoted y,=mNV=mn,, P,,
taken below, to point out that Eq$l1)—(13) can be also T,, andu,, respectively. In the present instanag,=0,
derived from heuristic considerations of a more general charsince the gas is globally at rest. Notice that the superscript
acter, without a recourse to the LTE1]. Additionally, and  “(0)”is used for the LTE. The subscripb® indicates that
this is the central point that underlies our Fisher approachwe deal with global-equilibrium quantities.
they can be confirmed axperimental resultfrom the field Sound propagation in a dilute gas entails planar motion of
of hydrodynamicg41]. Indeed, Eqs(11)—(13) are the hy-  the medium along, say, thedirection, so thati=ue,. The
drodynamic equations for the nonviscous flow of a fluid andyertinent analysis starts by representing both the gas density
possess solutions describing flow patterns that persist indefl; ang jts pressureP in the form of sums of global-

nitely [41]. In the local thermal equilibrium framework, the aquilibrium values plus perturbations that are produced by
local Maxwell-Boltzmann distribution never decays to thethe sound wave, i.e.,

true (globa) Maxwell-Boltzmann distribution, which is in
rough agreement with experience. p=pO=p,(1+0); P=PO=pP(1+P). (15
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Due to the fact that the perturbation is smalland P will
slightly differ from their respectivéglobal) equilibrium val-
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We have thus obtained, on the basigipthe conservation
theorems within a LTE context, arid) a first-order approxi-

ues. Also, as the bulk velocitiesare much smaller than the mation inu, an explicit expression fas(z,t) and therefore

sound velocityc,, we have

op- et
c, KT

o

(16)

u being a small dimensionless parameter. In these condPutlon functio

tions, Eq.(14) entails

2/3

Tz( Pl (17)

Po

for

p(Z,t)=po[1+a(z,t)]. (24
What is then the form of the corresponding molecular distri-
n? It should be of the form
f(z,v,)=1fo(v)[1+9(v)a(z,1)], (25
with g(v) an appropriate function of the molecular velocities
v. To find it we need to solve the BTE. The path we shall
follow in order to answer the above question is the first sig-

Notice that quite an important amount of information is en-pificant result of the present paper.

capsulated into this equation of state. On one hand, this At this, stage it is important to note that if E2) for o
equation arises from the conservation theorems. On the oth@{ inserted into the MDRevaluated up to some appropriate
one, it can also be regarded as an experimental result pertaiferturbation order the resulting expression does rexplic-

ing to the study of nonviscous fluidd1]. This last point of
view will be invoked in our Fisher treatment below.

Writing now p as a function ofo [cf. Eq. (15)], explicit
introduction of the temperatufg given by Eq.(17), into the
conservation expressioii$l)—(13) leads[in agreement with
Eq. (15)] to a set of just two equations, namely,

ot+uo,+(1+0)u,=0, (19

U+ uu,+ci(1+ o) Po,=0, (19

whereo,= doldz, o= daldt (similar notation foru deriva-
tives), andc, is given by

5 kgT,
Co= § m

An appropriate treatment of the set of E¢E8) and (19)
[41] allows one to obtain linear equations ferandu when

(20

second-order quantities jm are neglected. With such a first-
order approximatior{in x), a straightforward manipulation

of the above equations leads to the following resjts.
(i) For theo field, we have

1

_O'tt:O,
c

(21)

Oz~

itly include collision effects. In this effort we will be con-
cerned with this type of MDF. A better approximation i@y
consistent with Eq(23) but explicitly incorporating such ef-
fects, would be clearly desirable. Steps towards such a goal
are under consideration by the present authors and will be
published in the near future. We pass now to a methodology
for dealing with the transport equation.

C. The method of moments technique

In dealing with the Boltzmann transport equation one of-
ten faces great difficulties whose character is of both math-
ematical and physical natures. Thef contribution depends
on the effective cross section for molecular collisioti, As
one often ignores the form a@f’, the problem of integrating
the Boltzmann transport equation becomes problematic in-
deed. In practice, one makes use of simplified models for
which the molecular interaction can be represented by a suf-
ficiently simple law that depends on the distance among the
particles. A number of methods to tackle the ensuing, simpli-
fied Boltzmann problem have been developed over the years.
In this respect, an interesting approach to nonequilibrium
thermodynamics via the Boltzmann transport equation has
been developed by Grda6] (see also Ref$40,43)). Due to
the fact that the concomitant treatment allows one to visual-
ize the connection between the Safirmer wave equation’s
excited states and the Boltzmann transport equation’s solu-
tions, we will use below the Grad technique to find the dis-

which is a wave equation describing a sound wave of amplitribution function for the sound-propagation problem.

tude o, with propagation velocitye,,

Wo

o=o.exfgdi(kz—wyt)], Co=7 (22

(i) For theu field one finds an equation of forif21) so
that, keeping in mind Eq16), we can writeu=c,o. In this
way, up to the first order i we have
T=Ty,(1+3%0), (23

p=po(l+o); uU=cyo;

with o given by Eq.(22).

IV. METHOD OF MOMENTS TECHNIQUE TO
NONEQUILIBRIUM THERMODYNAMICS

A. Brief review

Consider the nonequilibrium state of a gas after the time
has elapsed, which is large compared to the time of initial
randomization(this time t is regarded adixed such that
conditions of local thermal equilibriun42] prevail, a cir-
cumstance very common indeptD,42. Now, at each point
of the vessel containing the gas a state arises which is close
to the local equilibrium state. This is, of course, the local
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thermal equilibrium scenario that allows us to use its associ- a\l? m

ated conservation laws. More specifically, we consider the  fo=n, P exp(—av?); A= 1 UTVz,

sound-propagation stage described in Sec. I[ld8 Eqg. Blo (29)

(15)], and assume a globd&},, the Maxwell-Boltzmann law

on velocities, as envisioned there. This allows one to expandith T, the temperature of the mediumm the molecular

the nonequilibrium distributior as mass, an g the Boltzmann constant. Hera, equals half

number of particles per unit of volume for the equilibrium

F=T(x.H=Fo(x)[1+ed(x.D)], (26 state. In pr?nciple,WF)is infinite and so is the nuqmber of

coefficientsa; that needs to be determined. The Grad mo-

where € is small. Determining the functiow will be our  ment equations form an open hierarchy. Under suitable con-

goal now. Following elementary ideas from the theory ofditions, however, one can obtain reasonable results using a

vector spaces, the unknown functigf(x,t) may itself be finite Wvalue, as in the case we will discuss below, in which

expanded in an appropriate basis. Thehogonal Hermite-  a suitable closure is introduced.

Gaussian polynomialsi;(x) that we will employ here usu- Assuming that(i) f is not too different from the equilib-

ally constitute quite a convenient basis in many instancesjum valuef, and(ii) the differencef —f, is produced by a

especially in quantum mechanical calculations. Definingplane wave of long wavelengttk€1), we can write

a;(t) as the pertinent coefficients at the fixed titneve have

f=f[1+boHy+biHy+byH5], (30

ikz H

t) = (OH (). 2 whereb; =b;(z,t) = e(2)a;(t) = ue"“a(t), u being a small

$xH Z a(HH ) @ dimensionless parameter. Our goal here is that of determin-
ing by, by, andb,. The first three Hermite polynomials are,

Expansior(27) was proposed by Grad in 1949, and it is well "©SPeCtively

known in the kinetic theory36]. It is important to point out _ _ _ 2

that Hermite-Gaussian polynomials are orthogonal with re- Ho=1, Hi=2\av, Hp=4av®-2,

spect to a Gaussian kernel, i.e., #gguilibrium distribution and Eq.(30) then takes the form

No other set of functions is orthogon@nd completewith

respect to a Gaussian kernel function. f=f[14by+2b;+av +2by(2av2—1)]. (31
Now, because of orthogonality, the unknown coefficients

a;(t) relate linearly to appropriateinknown moments off ~ The coefficientsb; will be determined from appropriate

over velocity spacexX spacg, so that substituting the expan- velocity-moment conditions, for which we choose

sion forf into the transport equation and integrating over all

velocities yields now a set of equations in the moments o

(which are generally a function of the fixed time valt)e f f(zy,hdv=n(zY),

These equations are solvable subjeckimown initial condi-

tions so that these moments now become kndimgluding o

any time dependengeAs a consequence, the coefficients f (mv)f(z,v,t)dv=mn(zt)u(zt),

a;(t) of Eq. (27) are also known, which givefs -
According to Refs[40,36,43, the solution of the above . .

system of equations would be equivalent to the exact solu- * 2 _

tion of Boltzmann'’s equatiofif enougha priori information foc(zmlv ul )f(z,v,t)dv 2 n(z,DkgT(2,Y),

were availablg (32

the magnitudes(z,t), u(z,t), andT(z,t) conserving their
usual meaning, i.e., particle number per unit volume, bulk
velocity, and temperature, respectively. The above equations
We tackle now our BTE treatment of sound propagationare solvable subject to known initial conditions, for which
We will do this using the Grad-MOM algorithm. Remember we need to use the availabdepriori information.
that, to such an end, we need the results obtained in Sec. lll. Since the perturbation is small, we can use the LTE con-
We start by casting,=113f,,; and focus our attention on the servation theorems derived above for diluted monatomic
z component off, the direction of propagation. The Grad- gases in the preceding section. Thus, we assume that the
method of moment$MOM) to find f [40,36,43 entails its  (z,t) dependence of the MDF is given by the conservation
expansion in the manner theorems. Here, we are only concerned about the velocity
dependence. Indeed, the whole purpose of the preceding sec-

B. The treatment of sound propagation by the method
of moments

W .
tion was to prepare the stage for the present MOM treatment.
f(zu,t)=fo(v)| 1+ e(z)Ei‘, a(OH (Vav)|, (28 To the first order inu [see Eqs(16) and(23)], we have
(with p=nm)
wheref, is the Maxwell-Boltzmann law on velocities n=ny(l+o)u=c,oT=T,(1+30). (33
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Thus, we havdto the same order of approximatjon

nu=n,C,o; NT=n,T,(1+30). (34)
Inserting Eqs(33) and(34) into the velocity-moment condi-

tions, Eq.(32), we obtain

f fdo=ngy(1+ o), (35
J’ vfdv=n.c,0, (36
Jx 2y =100 14 > 3
I P R (87

with a given by Eq.(29). Sincef is given by Eq.(31), inte-

gration then yields an easily solvable linear set of equation

for our unknownsb,, b;, andb,:

No(1+by)=ny(1+ o), (39
1
noﬁblznocoav (39
M 1+ b+aby)= o[ 142 40
55 (1T botaby) =2 1+ 30 ). (40)
By solving the above system, one finds
bo=0; b=(3)"0; b,=}0. (41)

Finally, substituting Eqs(41) into form (31) for f, and
taking into account thaa=5/(6c2) [see Eqs(20) and(29)],
leads one to the molecular distribution function

2
1+o(z,t)

f(z,v,t)="Fo(v) §+§Ci . (42

; )
9 2
900

The functiong(v) of Eq. (25 has now been determined to
be

(2,50 50
9W=l3%35, 9 ¢2)

which was our goal here.
According to Refs[40,36,43, Eq. (42) is the BTE solu-

(43
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V. SCHRODINGER WAVE EQUATION APPROACH TO
NONEQUILIBRIUM THERMODYNAMICS

A. Connecting the Schralinger wave equation’s excited
solutions to nonequilibrium thermodynamics: A brief review

The connection has been established in R27]. The
excited solutionsy,(x,t) to the Fisher-based SWE, E@L),
can be written as a superposition of Hermite-Gaussian poly-
nomials of the form

¢n<x,t>=¢o<x>2i bu(OH(x), n=12,..., (45

where ¢, is the g.s. of the harmonic oscillator. The total
number of coefficientd,,;(t) depends upon how far from
equilibrium we are. At equilibrium there is only one such
coefficient. The coefficients,,;(t) are computed at the fixed
%ime t at which the experimental input daté,), are col-
ected. While the ground state solution of the Sclimger
wave equation gives the equilibrium states of thermodynam-
ics[26], its excited solutions give nonequilibrium stafeg].

In other words,,,(x,t) is connected, under certain condi-
tions (see below, with the known solutions of the Boltz-
mann transport equatiof(x,t) by

f(x,t)=n(t)|gn(x,t)|?

at a fixed timet, where n(t) is the density of particles
(whichever their velocity at instantt.

The connection given by E@46) was established in Ref.
[27] via the Grad-MOMf(x,t) of Eq. (27). Due to the fact
that the square modulus of an expansion in Hermite-
Gaussian polynomials is likewise a superposition of
Hermite-Gaussian polynomials, with real coefficieaigt),

(46)

|wn<x,t>|2=[¢o<x>]22 Cin(DH(X), n=12,...,
47)

then, for fixedn, the MOM coefficients;(t) andc;,(t) are
connected. Indeed, both are certainly computed &ixed
timet. That is, the MOM momenta are evaluated at that time.
Likewise, (A,) of Eq. (2) can be regarded as velocity mo-
menta at that time as well.

Although both the Grad-MOM and the Schiinger wave
equation coefficients are interconnected, an intrinsic differ-
ence exists between them, which is of a physical origin. The
MOM moments at the time are physically correct by con-
struction, since one actuallgolvesthem using the Boltz-

tion for our sound-propagation problem within the stricturesmann transport equation. On the other hand, the premise of
posed by the order of approximation one is adopting herethe constrained Fisher information approach is that its input
We stress again the fact that the formed(iz,t) in Eq.(25)is  constraints(here the velocity moment§A),) are correct,
derived from the above discussed LTE conservation theosince they are obtained from experiment. Here, we are as-
rems[cf. Eq. (22)]: suming error-free valueghe introduction of error bars will
not be discussed here. We will deal with them in a future
papej.

Summing up, the approach given in REZ7] gives solu-
tions at the fixedbut arbitrary time t which agredvia Eq.
(46)] with those obtained using the MOM approach. This
holds, for fixedn, at each timet [cf. Eq. (2)]. The Schre

Wo
Co=

o=o.exgdi(kz—wyt)],

a sound wave of amplitude, that propagates with velocity
Co-
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dinger wave equation approach yields solutions valid at diswhich can be recast as
crete time pointg. In other words, for any other time value

t* we need to input newA,) values, appropriate fothis W,
time. The MOM, instead, obtains coefficiersgt) valid for 2
continuous timd, since they are using the Boltzmann trans-

port equation, which is a continuous one. This distinction,ynare 3= polw,. Equation(51) is the well-known Sciro
“discrete versus continuous,” does not compromise the Vaginger equation for the harmonic oscillator, for which the
lidity of the Fisher-Schrdinger < nonequilibrium thermo- ground state solution is given by

dynamics bridge.

1 42

- —tav?
a gy

y=Ey, (59

a4 a
—| _ __ .2
B. The Schradinger wave equation treatment bo= T exp{ 2V ] (52)

In this section, we will analyze the propagation of sound .

waves in a dilute gas using the Fisher information technique-.rhe prior knowledge, EqA9), then leads to

The solution so obtained will be compared with that of the m

Boltzmann transport equation. a= Po _ ] (53)
In order to find the PDF one has to solve the Sdiniger wo  2kgTo

wave equation corresponding to our available prior informa-
tion. Due to the fact that the sound wave is traveling along{N
the z direction, we choose the coordinates so that E¢4)

Obviously, the ground state solution of the Salinger
ave equation is connected with the thermal equilibrium

becomes,=pv (v denotingv,) and write the Schidinger ~ State
wave equation in the velocity space as
a ysp ne?=To, (54
1 Py O a . . o
— 4 > MDA Y= o i, (48)  wheref, is the first term of the MOM expansion, i.e., the
2p0 gv? k= 8 Maxwell Boltzmann law.
where N (t)Ag(v) = — (L/8)\(t)Ax(p,). The procedure to 2. Superposition of ground plus excited states
be followed involves the following two stages. (a) Setting up the appropriate SWE proble@ne is con-

(1) We determine first the global-equilibrium state that is sarned here with a sound wave of long wavelengtke L)
to be later perturbed by the sound wave. Our input empiricajat traverses a monatomic gas. According to our scenario,
information at this stage is that of,, T, andp,. Viathe e are in possession of two important pieces of information,
equipartition theorem this is tantamount to knowitg),  namely, that the sound velocity, is independent of the fre-

the one and only expectation value that enters herd48). quency[41] and that the accompanying internal processes
(2) In the second stage, we use experimental facts regardyq adiabati§41], i.e.,

ing sound propagation in a fluitempirical hydrodynamic

equationg11)—(13)]. This tells us that thezt) dependence 8T

of the density perturbation produced by the sound wave is of co= Yoy Y=o (55)
the form prescribed in Eq$15) and(22). Additionally, we

assume knowledge of the empirical velocity of sound in theye now assume that a further additional piece of knowledge
medium. As discussed below, this entails knowledgéwdf  ig that of the actualexperimental value for the gas sound

velocity c,. As we have seen in Sec. lll A that:c,, this
entails knowing the mean value of According to our CFIE
At first stage, we deal with a monatomic gas that it ispoint of view, we should now introduce a linear termun
globally at rest. We know the gas density, its temperature  within the “information” potential entering the Fisher SWE,
T,, and the number of molecules per unit volumg Using  accompanied by an appropriate Lagrange multiplierhich,

1. Ground state

the equipartition theorem, we can write for the sake of convenience, is given the fogr \ad. We
then need to determing.
(3povDo=3noksTo, (49) Our Fisher-Schrdinger wave equation now becomes
2
where the notatiok ), is utilized to indicate that the average Wo| E (9—+a 24 94a —E 56
value is calculated in the equilibrium state. Equati@9) 2 a gy? v Vav | y=Ey (56)

constitutes the prior knowledge. Therefore, choost@v)
=p? and writing )\i(t)=p0/(2wg),a/8= E/wg, the time- that can be treated perturbatively in view of our knowledge
independent Schainger wave equation is given by of the problem.

It is well known that if one perturbs the ground state of

1 g2 p E the harmonic oscillator with a linear term, only the first ex-
5 + 021)2 b=—y¢ (50) cited state enters the perturbative series because of the perti-
Po dv® 2w wg nent selection rulef4s], i.e.,
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(YoHn(2)|Z| poHm(2))=C18(n,m+1) +c,8(n,m—1), BTE for colliding atoms. However, as the input experimental
(57)  information indicates that we are in the presence of an adia-
batic procesgand thus the equation of stat&7) applieq,
wherec, andc, are appropriate constants, which entails thatoyr LTE conservation theorems and the empirical hydrody-
for m=0 (ground stat)?, only n=1 (first excited Stat)i'COﬂ- namic equa‘[ions necessar”y do agree.

tributes. _ _ The MOM approach uses the arguments and derivations
We can thus write Eq45) in the manner of Sec. IIl A so as to obtain the velocity moments. There the
LTE conservation theorems constituted the source from

Y=ol doHo+d1H, ], (58) which the relevant information derived. In the Fisher in-

where we writed =d.(z,t) = ue*?(t) (u<1). The first stance, the same information is used once again, but with a
A ! twist: it is regarded as derived from experiment, not from

two Hermite polynomials are ) . .
conservation theorems. In both instances we obtain, as a re-

Ho=1, lez\/gv_ sult of judiciously employing the priori information, the
(z,t) dependence of the density perturbatierin p=p,(1
We can thus cast E@58) in the form +0) [cf. Eq.(15]. What we need to determine is the veloc-
ity dependence of the distribution function.
= o[ do+2d;av)]. (59 (c) Solving the Fisher-SWE problefdow, up to the first
order in u, we have[see Egs.(16) and (23)], using p
Thus we have —nm,
|91?= pllao+ as2\av + axdav?], (60)

n=ny(1l+0); u=cyo; T=T,(1+%0). (64)

where the real coefficienta; are related to thel; by the

following expressions: Moreover, at the same order of approximationuinwe get

ao=|dol”  a1=2(dfdy+dod});  @p=|dif”. (61) (0?)= '%TN % - ga | 65
The coefficients; will be determined from the appropriate
velocity-momenta conditions. We start by calculating where we have invoked both the equipartition theorem and
. the knowledge that the process is adiabatic.
<vn>:j v"y2dv, n=0,1,2 (62) Now taking into account, with reference to E¢83), both
—w the normalization condition and Eq$4) and (65), we get
using Eq.(60). We obtain 1=a,+2a,,
(1)=agt+2as, 1
CoO0= —=0wnq,
< > 1 o] \/a 1
V)— (=1,
Ja ! 5
1 1+ §0'=a0+6a2. (66)
(%)= 55 (aoT6ay). (63)

The above equations’ system leads to

On the other hand, we can use thgriori information for

evaluating the above mean values. a=1-30, a1=Co\ao, a,=jo. (67)
(b) Remarks on the treatment of information in the two

different approachesAt this stage, it is important to point Substituting then Eq67) into Eqg. (60), we find

out that we are looking at things in a way that is quite dif-

ferent from that of Sec. lll. Here, the system of equations s 2

formed by(i) the continuity equation, Eq11), (ii) the Eul- | ]*= 5

er's equation(12), and(iii) the experimental gas state equa-

tion P=P(p) [cf. Egs.(17) or (14)] are regarded as empiri- |

cal hydrodynamic equations that describe the propagation o

sound in a nonviscous gd44]. This notion was already

1+o

1+50+502 68
3 3¢, 9c§ ' (68)

Pserting now Eq(67) into Eq.(61) leads to

advanced in the paragraph following E@.2). Notice that do=(1—-50)e'%, dy=Vzoe' ",
our Fisher treatment is a proper thermodynamic [#&27]
and as such does not require any input information that cog a,— a;)=350, (69

would assume underlying microscopic structures. This would
indeed have been the case if we tried to include any inforso that, substituting the above expression into &§), we
mation from microscopic models such as the LTE or even th@btain
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nlyl?=f, (74)

= o , (70

o v 1 v
1—6(1—50—0)—|§@C—o

wheref is the molecular distribution function obtained via
where quantities smaller than those of the first ordejin the MOM techniquesee Eq.(42)]. This is an elegant and
have been neglected. Finally, we obtain the valte illuminating relationshiga kind of Rosetta stoneonnecting
= —(2/3)/6/5 for the Lagrange multiplier associated to our the off-equilibrium sound-propagation stateﬂwith a superpo-
knowing the actual value of the sound’s velocfigf. Eq.  sition of ground plus excited states of a Salinger wave
(56)]. equation. The molecular distribution for the off-equilibrium
At this stage, the reader may well question the interest irsound-propagation state is proportional to the square modu-
the wave functior(70), insofar as there seems to be nothinglus of a Hilbert space wave function. Of course, after making
relevant iny that is not already contained in the probability this connection we are now able to speak of a microscopic
distribution functionf. Three points are worth emphasizing substructure also within the Fisher context.
in this respect, given as follows.
(1) Wooters has_ _shO\_Nfﬂ_G] that thedistinguishabilitybe— VI. CONCLUSIONS
tween two probability distribution§; andf, is measured by
the angle in the Hilbert space between the corresponding We have revisited in this work the Fisher-SWE technique
amplitudes(square rootsy; and i,. More specifically, let ~developed in Ref[27]. We state now our main conclusions
us define) as the appropriate space of probability distribu-below.
tions we are dealing with. Then, fdi ,f, e Q) we define the (1) As a rather interesting result, we have here illustrated,
Wootters distance as with reference to the sound wave propagation process in di-
lute gases and its treatment via the BTE, the equivalence
1 between Grad’s metho{36,40,43 for the BTE and the
Dy(fq,f2)=Ilim—=Y,, (7)) Fisher SWE approadi27] that does not us@t all) the BTE.
n—ee \/ﬁ (2) Additionally, we show how to derive, using these two
methods, the 4,v,t) dependence of the perturbation to the
il dsiingshable I vals (4, From ou ioma 111 22151 A 5 soun e repagaing o
tional viewpoint, we are always going to infer PDF's out of different methods are given in order to obtain the pertinent

input data that will be contaminated by error. Physical dis-MDF that ts th _ fi tate of the di-
tinguishability of PDF’s then constitutes an important issue.Iute gasa Trﬁgsrgssrgsgiv:nst;)eulg\?v propagation state of the di

(2) No equation has received more attention with a view (A) The Boltzmann method: The LTE conceptual infor-

to app.roxmatlops anq numenca] teqhmques than the S\.NEmation and BTE conservation theorems constitute the Grad
Thus, if faced with a given equation, it is always worthwhile g+ approach, which leads to the MDF

to tra;Esf(t)rm gt’ i Tk?” |F3)o_ssibl_e, intfotﬁ S\Ii\'/E. AIT an eX"’;_mp'?* (B) The Fisher method: The hydrodynamic experimental
;eef 4(; reatment by Frigogine of the Liouville equation I ¢,mation (in two stages constitutes the Fisher-
ef. [47]. Schralinger wave equation, which again leads to the MDF.

. t(r?) I.n addt|t|0tnﬂt10 thetse }WO plIJtrzly pf%“';"?" Ft)r?lmlsyt thc(jereNote that this method is independent of the Grad method.
IS the important theoretical result described in the Introduc- — ¢ important to reiterate that th&ourceof prior infor-

tion that both thermodynamics and quantum mechanics Ca\ation differs for the two approaches. In methok) we
be expressed_ by a recourse to a formal SWE, out of a COMiave included, as an essential form of prior information, the
mon informational basipl4]. LTE conservation theorems. In meth¢d) instead, we had
. to do with hydrodynamic experimental information, in two
C. The connection stages. In the first stage, we assume experimental knowledge

We are now in a position to appreciate just how the ex-of density, temperature, and molecular weight that enables
cited states’ solution to the Scmmger wave equation is one to use the equipartition theorem. In the second Stage, we
connected with our thermal off-equilibrium, sound- assume having measured the actual velocity of sound.

propagation state. The link reads, setting(x,t) (3) Remember that thermodynamics can be regarded,
=n(x,t)|4]?, from an axiomatic viewpoint, as a logical mathematical

structure whose axioms are empirical res[8g]. Thus, ther-

whereY,, is the maximum number of intermediate vectbrs

2' 1 5v 5yp? modynamics does not, indeed cannot, assume any underlying
f=no(l+o)¢y 1+o| —z+3-+5 3] | (72 microscopic picture. Since our Fisher treatment is a proper
L © Co thermodynamic ong26,27, it does not require any input

information that would assume underlying microscopic
structures, which would indeed have been the case if we tried
5 5, 52 to include any information fr(_)m microscqpic mod_els such_ as
i i (73  the LTE. However, as the input experimental information
3 3¢ 9¢2 indicates that we are in the presence of an adiabatic process
[and thus the equation of statE?) applieq, the LTE conser-
Due to the fact thah,¢2="f, [see Eq(54)], it is clear that  vation theorems and the empirical hydrodynamic equations

that is,

f(x,t)=ned? 1+ o
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necessarily do agree, and, although the origin of the input 1. The relevant quantities

information is different in methodA) and (B), the output If we know the BTE solutiorf =f(r,v,t), we can imme-
informational content turns out to be equivalent in both aPgiately evaluate the following quantities:

proaches.

The a priori information in both approachd#) and(B)
determines theZzt) dependence of the molecular distribu- p(l’,t)ij d3vf(r,v,t) (mass density (A3)
tion function. The velocity dependencgv) is obtained in
quite disparate ways in metho@) and(B). They do coin-
cide in the final result, though. As far as new physics is
concerned, this fact constitutes the main contribution of the U(f,t)=f d*vf(r,v,t)v  (bulk velocity,  (A4)
present paper.

(4) From an epistemological point of view, one should
contrast the transparency and the immediacy of the Fisher
approach with the convoluted and arduous path one must
traverse in the BTE case, as the Appendix dramatically and
unequivocally illustrates.

(5) After connecting the MOM with the Fisher results we
are entitled to discuss the underlying substructures within the
latter approach. Even though, according to the constrained (AB)
Fisher tenets, we expected that the MDF would be given by
the square modulus of some SWE wave functidf), what
we actually found is that this WF, for sound propagation in a Pij=p([(vi—u)(vj—up]) (pressure tenspr (A7)
dilute gas, is identical to that of a harmonic oscillator per-
turbed by a linear term, a rather surprising result, since just
oneexcited state enters the concomitant linear superposition. n(r,t):J dvf(r,v,t) (particle density. (A8)
Situations that require higher-order perturbative treatments
are currently under investigation and are planned to be pub-
lished elsewhere. 2. Conservation theorem

The BTE implies[41]

m
®(r,t)=§<|v—u|2) (kg times temperatuje  (A5)

q(r,t)= gp<|v— ul?(v—u)) (heat flux vector,

APPENDIX: CONSERVATION THEOREMS
FOR THE BOLTZMANN EQUATION
T ) v os <0, (A9
. oo . . - ——(nv;§)—n{v; =) =0,
We remind the reader in this appendix of the main factors at IX; ' L oxi
entering the discussion of the conservation laws involved in

a discussion ofexclusively the Boltzmann transport equa- where Einstein’s subindex convention is employed. Let us

tion [41]. None of the following considerations apply to the now choosé to be&=m (mas$, £=mo; (momenturm, and

Fisher treatment. The BTEvithout external forcesreads £=(m/2)(|v—ul?) (thermal energy Using Eq.(A9) one im-
mediately obtains three conservation laws, namely, those of
(i) mass,(ii) momentum, andiii) energy[41].

f=D.f, (A1) Of course, as remarked by Huaf4l], in the classical
treatment(not in the Fisher oneone needs first to solve the

wheref =1f(r,v,t) is the MDF andDf represents changes in BTE and find then the pertinent MDF to be in a position of

verifying that the above conservation laws are indeed ful-

f due to collision effects, whose explicit expression can bp’filled This does not seem to be of much help. In text, we

found in Ref.[40]). As we saw in Sec. Ill, in any molecular d the local th | iibrium f Kt
collision there are dynamical quantities that are rigorousb}1ave u(%()a € local thermal equifibrium Iramework to con-
structf'™). Inserting it into Eq(A9), the above conservation

conserved, which gives rise to important conservation theo? . = X
rems g P laws yield now three conditions that p, andT must verify,

If (i) £(r,v) is any quantity associated with a molecule of namely, Eqs(11)—(13). They are assumed in the classical

velocity v located atr, and, additionallyii) in any collision fc)gg?d(?:f' trtiattr:';efgél]vﬁ \I/:;}r/n”;oa Stlr?;\tl’tﬁrgogtrham;nr:\erst
vy,V,—Vy,V5, taking place at, we haveé,+&,=¢&;+ &5, Ing ’ W IS variatl u

then (iil) £ is a conserved quantity ard1] respect these conservation equations. Moreover, our three
q y guiding Egs.(11)—(13) turn out to be the hydrodynamic
equations for the nonviscous flow of a gakl]. Two addi-

a+ P
gtV or

3 _ tional results are derived from these consideratietis: (i)
f d*0 £(r,V)[Dcf]=0. (A2) q(r,t) vanishes identically, so that all our local processes are
adiabatic, andii) P=nkgT.
From Eg.(A2) and an appropriate choice éf we get three All the material is this appendix pertains exclusively to
independent conservation theorems for mass, momenturthe Boltzmann treatment, and none of it whatsoever is
and energy, respectiveli41]. needed in the Fisher treatment.
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